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C-Glycosides, compounds in which the interglycosidic oxygen

atom has been replaced by a carbon atom, are an important clas

of stable carbohydrate mimiésThese compounds have received
considerable attention from both a synth&éind biological point
of view, and the debate regarding their validity as conformational
mimics of the paren©-glycosides is ongoing.

The preparation ofC-saccharide$, whether they areC-

disaccharides or higher homologues, is considerably more chal-

lenging than the synthesis of simpleglycosides. Any linkage,
other than (£+6), consists of only one carbon atom separating

the two monosaccharide units. Although there have been several

approaches to the synthesis of a variety of differentially linked
C-disaccharide%no single method provides a unified and versatile
strategy for a convergent and efficient synthesis et{}, (1—2),
(1—3), (2—4), and (+6) linked-C-disaccharides. In this com-
munication, we report that a Keck allylatieming-closing me-
tathesis (RCM) approach delivers a variety of differentially linked
p-C-disaccharides in an efficient manner and provides the first
unified entry to this important class of carbohydrate minfics.
The general approach begins with dehydrative coupling of a
suitable carbohydrate-based acid sucl2 asth olefin alcoholl
to give ester3, Scheme 1. Methylenation & is followed by
RCM to then give glycab. Functionalization of the double bond
then delivers thgg-C-disaccharide$ or 7.

For the preparation of the various carbohydrate-based carboxy-

lic acids, we relied upon a radical allylatiooxidative cleavage
approach. The chemistry is illustrated with the preparation of the
C-4 gluco acid12a Scheme 2.

(1) (a) Postema, M. H. DC-Glycoside Synthesigst ed.; CRC Press: Boca
Raton, 1995; p 379. (b) Levy, D. E.; Tang, The Chemistry of C-Glycosides
1st ed.; Elsevier Science: Oxford, 1995; Vol. 13, p 291.

(2) For reviews onC-glycoside synthesis, see: (a) Postema, M. H. D.;
Calimonte, D. InGlycochemistry Principles, Synthesis and Applications
Bertozzi, C., Wang, P. G., Eds.; Marcel Dekker: New York, 2000; pp 77
131. (b) Du, Y.; Lindhart, R. J.; Vlahov, |. Rletrahedron1998 54, 9913—
9959. (c) Beau, J.-M.; Gallagher, Top. Curr. Chem1997, 187, 1-54. (d)
Nicotra, F.Top. Curr. Chem1997, 187, 55—-83.

(3) Bertozzi, C.; Bednarski, M. IrModern Methods in Carbohydrate
Synthesis Khan, S. H., O'Neil, R. A. O., Eds.; Harwood Academic
Publishers: Amsterdam, 1996; pp 31851.

(4) (a) Wei, A.; Haudrechy, A.; Audin, C.; Jun, H.-S.; Haudrechy-Bretel,
N.; Kishi, Y. J. Org. Chem1995 60, 2160-2169 (b) Asensio, J. L.; Espinosa,
J. F.; Dietrich, H.; Caada, F. J.; Schmidt, R. R.; MantLomas, M.; Andfe
S.; Gabius, H.-J.; Jifmez-Barbero, JJ. Am. Chem. S0d.999 121, 8995~
9000. (c) Rubinstenn, G.; Sinaf.; Berthault, PJ. Chem. Phys. A997,
101, 2536-2540 and references therein.

(5) For a review ofC-saccharide synthesis, see: McKee, M., Liu, L.
Postema, M. H. DCurr. Org. Chem2001, 5, in press.

(6) For some synthetic approachesQalisaccharides, see: (a) Postema,
M. H. D.; D. Calimente, D.; Liu, L.; Behrmann, T. L1. Org. Chem2000
65, 6061-6068. (b) Griffin, F. K.; Paterson, D. E.; Taylor, R. J. Kngew
Chem. Int. Ed1999 38, 2939-2942. (c) Khan, N.; Cheng, X.; Mootoo, D.
R. J. Am. Chem. Sod999 121, 4918-4919. (d) Leeuwenburgh M. A
Timmers, C. M.; van der Marel, G.; van Boom, J. H.; Mallet, J. M.; Sm%.y
Tetrahedron Lett1997 38, 6251— 6254. (e) Dondom A, Zuurmond H,;
Boscarato, AJ. Org. Chem1997, 62, 8114-8124. (f) Mallet, A Mallet,
J.-M.; Sinay, PTetrahedron Asymmetrd994 5, 2593-2608. (g) Sutherlin,

D. P.; Armstrong, R. WJ. Org. Chem1997, 62, 52675283. (h) Martin, O.
R.; Lai, W.J. Org. Chem1993 58, 176-185.

(7) For a review on the use of olefin metathesis in carbohydrate chemistry,
see: Jorgensen, M.; Hadwiger, P.; Madsen, R.; Stutz, A. E.; Wrodnigg,
M. Curr. Org. Chem200Q 4, 565-588.

10.1021/ja010641+ CCC: $20.00

J. Am. Chem. So@001,123,8602-8603

Scheme 1.Metathesis Approach t€-Saccharide Synthesis
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Alcohol 8 was converted to iodide® and exposure to
allyltributyltin and AIBN® gave the equatorially allylated product
10ain 75% yield. Some of the inseparable axial isomer (15%)
was also formed. The acetates were exchanged for benzyl groups
(75% over two steps), and oxidative cleavage of the mixture of
olefins 11a gave the corresponding aldehydes which were
separated® The major aldehyde was then oxidized to atith,
Scheme 2.

DCC-mediated coupling of acitRawith alcohol13 gave ester
14ain good yield. Methylenatio® of 14aand subsequent ring-
closing metathesis of acyclic enol etHdéfamediated by catalyst
192 furnished the (3-4)-C-disaccharide glycal6a(41%). This
low yield was puzzling, since TLC analysis of the reaction showed
clean conversion df5ato the cyclized material6a We reasoned
that the glycal was decomposing or hydrolyzing during purifica-
tion, and this prompted us to explore a one-pot approach. Once
the RCM reaction was deemed complete by TLC analysis, an
excess of Bt THF3 was added to the reaction mixture. Oxidative
workup then furnished the {t4)-3-C-disaccharidel7ain 64%
over two steps. Hydrogenolysis of the benzyl groupd daand
peracetylation then afforded the kno\(l—4)-5-C-disaccharide
18a Scheme 3. This one-pot protocol not only improved the yield
of the final product but also removed the need for purification of
the sensitiveC-disaccharide glycal6a

Acids 12c—12e (not shown) were prepared using the same
general approach outlined in Schem® Zhe stereochemistry of
the allylation step was ascertained by Noe alttl NMR
decoupling experiments on the corresponding aldehydes and was
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Table 1. Synthesis of3-C-Disaccharides by RCM Scheme 3.RCM-Based Synthesis ¢gi-C-Disaccharides
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181 X = Gt 543 oo The above results show that the RCM approadB-saccharide
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